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Invariance of edit-distance to  
tempo in rhythm similarity
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Abstract
Despite the long history of music psychology, rhythm similarity perception remains largely 
unexplored. Several studies suggest that edit-distance—the minimum number of notational changes 
required to transform one rhythm into another—predicts similarity judgments. However, the 
ecological validity of edit-distance remains elusive. We investigated whether the edit-distance model 
can predict perceptual similarity between rhythms that also differed in a fundamental characteristic 
of music—tempo. Eighteen participants rated the similarity between a series of rhythms presented 
in a pairwise fashion. The edit-distance of these rhythms varied from 1 to 4, and tempo was set at 
either 90 or 150 beats per minute (BPM). A test of congruence among distance matrices (CADM) 
indicated significant inter-participant reliability of ratings, and non-metric multidimensional scaling 
(nMDS) visualized that the ratings were clustered based upon both tempo and whether rhythms 
shared an identical onset pattern, a novel effect we termed rhythm primacy. Finally, Mantel tests 
revealed significant correlations of edit-distance with similarity ratings on both within- and between-
tempo rhythms. Our findings corroborated that the edit-distance predicts rhythm similarity and 
demonstrated that the edit-distance accounts for similarity of rhythms that are markedly different in 
tempo. This suggests that rhythmic gestalt is invariant to differences in tempo.
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Rhythm, the temporal patterns of  sound onsets, is an integral part of  music structure and can 
provide a potent cue to song identification even without melodic or harmonic information. For 
example, an enthusiast of  classical music could identify some of  the most distinct compositions 
in classical music, such as Tchaikovsky’s 1812 Overture, Beethoven’s Fifth Symphony, or Mars, 
the Bringer of  War from Holst’s The Planets, solely based upon rhythm. Outside the world of  
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classical, jazz musicians often improvise main rhythmic themes, (re)forming an important part 
of  both a song’s and a musician’s characteristics. Furthermore, composers can use rhythms 
that are similar to each other to tie in motifs, providing a sense of  identity or togetherness for a 
piece of  music. For computational purposes, rhythm similarity is also a crucial dimension for 
music database algorithms that classify songs within the same genre or category (Panteli, 
Bogaards, & Honingh, 2014; Paulus & Klapuri, 2002). As such, the psychological mechanisms 
and computational principles that underlie rhythm similarity have been queried by scholars in 
music theory, musicology, and psychology (Cao, Lotstein, & Johnson-Laird, 2014; Orpen & 
Huron, 1992; Post & Toussaint, 2011).

An early model of  rhythm similarity (Toussaint, Matthews, Campbell, & Brown, 2012; 
Tversky, 1977) assessed similarity between rhythm phrases on the basis of  shared features 
(Figure 1). Inspired by geometry, this feature-based model visually represented rhythms as 
circular, two-dimensional shapes consisting of  notes and rests as represented by black and 
white circles, respectively (Figure 1). By connecting black dots in the circle, one can readily 
appreciate the rhythmic structure and extract distinct features (e.g., mirror symmetry). This, 
in turn, would help to discern the degree of  similarity between different rhythm phrases. For 
example, two rhythms that are symmetrical in this diagram are expected to sound highly 
similar (e.g., R1 vs R2 in Figure 1) compared with a rhythm without this feature (e.g., R1 vs 
R3 in Figure 1).
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Figure 1. Three rhythm phrases written in both musical notation and geometric notation for feature 
extraction. Both Rhythm 1 (R1) and Rhythm 2 (R2) exhibit mirror symmetry about one axis, while Rhythm 
3 (R3) does not. Thus, feature-based theory postulates that R1 is more similar to R2 than R3 due to 
shared mirror symmetry. Adapted from Toussaint, Matthews, Campbell, and Brown (2012).
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More recently, the edit-distance model eschewed this feature-based rhythm similarity 
account in favor of  a transformational approach (Toussaint et al., 2012). Transformational 
approaches of  similarity like edit-distance are used in many domains, for example, to assess 
similarity between strings of  character symbols in computer science (Lowrance & Wagner, 
1975; Wagner & Fischer, 1974) as well as between melodic sequences using musical data-
base search algorithms and string matching techniques (Cambouropoulos, Crawford, & 
Iliopoulos, 2001; Typke, Veltkamp, & Wiering, 2004). Edit-distance is defined as the mini-
mum number of  edits—operationalized as insertions, deletions, and substitutions—of  
rhythm units required to transform one rhythm phrase into another (Figure 2). Fewer edits 
corresponds to a higher degree of  rhythm similarity (Orpen & Huron, 1992; Post & Toussaint, 
2011). Importantly, edit-distance was shown to be more successful at predicting human 
perception of  rhythm similarity than feature-based approaches (Toussaint et  al., 2012; 
Toussaint & Oh, 2016). Nevertheless, computational models of  rhythm similarity often 
ignore ecological validity, and edit-distance is no exception. Prior studies of  edit-distance are 
limited by their use of  overly simple rhythmic patterns with identical tempos (Toussaint 
et al., 2012; Toussaint & Oh, 2016), naturally inviting an important question of  whether or 
not edit-distance still accounts for perceptual similarity between rhythms of  different 
tempos.

Tempo is a visceral characteristic that strongly influences the identity of  songs (Cupchik, 
Rickert, & Mendelson, 1982; Gabrielsson, 1973). Specifically in electronic dance music (EDM), 
tempo is a primary dimension for classifying EDM subgenres and strongly influences perceived 
similarity of  rhythms (Caparrini, Arroyo, Pérez-Molina, & Sánchez-Hernández, 2020; Honingh, 
Panteli, Brockmeier, Mejía, & Sadakata, 2015). Moreover, musical phrases have been convention-
ally mapped into discrete categories based upon tempo (e.g., slow vs fast beats, or adiago vs allegro; 
Gabrielsson, 1973) presumably due to perceptual ease. Significant changes in tempo can inhibit 
the ability to recognize melodies (Halpern & Müllensiefen, 2008). For example, many musical gen-
res and folk tunes are easily recognizable and discriminated based on tempo (Cupchik et al., 1982; 
Halpern, 1988), and dramatically sped up or slowed down versions of  songs appear to change 
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Figure 2. An example of an edit-distance of 3 between two rhythms (R1 and R2), calculated through 
insertions, deletions, and substitutions.
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their identity. In addition, fluctuations in tempo appear to alter the relative subdivision patterns 
and durations of  individual notes within isochronous rhythms such as the samba, owing to the 
inextricable relationship between tempo and rhythmic contents (Haugen & Danielsen, 2020). As 
such, tempo is an important factor to be included when evaluating the edit-distance model.

Overall, the present study sought to further augment the previous groundwork regarding edit-
distance in rhythm similarity (Toussaint et al., 2012; Toussaint & Oh, 2016). We constructed a 
total of  16 rhythm phrases that independently varied in tempo and rhythmic structure with a few 
important constraints regarding the edit-distance manipulation (Figure 3). Although edit-distance 
encompasses three types of  edits (substitution, insertion, and deletion), it is important to note that 
insertions and deletions add or remove a single rhythm unit, thereby altering the perceived meter 
of  a rhythm phrase (Toussaint et al., 2012). As such, insertions and deletions can be more prob-
lematic when comparing rhythm phrases with an odd number of  edits (e.g., 1, 3, 5, etc.), as this 
can change the meter of  a rhythm phrase between duple and triple. By contrast, substitutions 
allow us to manipulate edit-distance while keeping meter constant (Toussaint et al., 2012). To best 
control for the potential confounding influence of  metric changes (Cao et al., 2014; Prince, 2014), 
we limited our transformations of  rhythm phrases to substitutions of  individual rhythm units (i.e., 
sounded onsets of  rhythm notation). In addition, we substituted rhythm units that matched in 
total duration (e.g., quarter note and eighth note pairs; Figure 3).

Each of  the eight unique rhythm phrases used in this study was generated at two different 
tempos—a moderate tempo of  90 beats per minute (BPM) and a fast tempo of  150 BPM—lead-
ing to 16 rhythm phrases total. These largely different tempos were chosen as opposed to two 
similar tempos, such as 110 and 120 BPM, to ensure that participants could clearly perceive 
the tempo differences during the task. During the study, each rhythm stimulus was paired with 
one another and presented to participants sequentially, who then rated the perceived similarity 
of  the two rhythms. We hypothesized that rhythms presented at the same tempo would yield 
higher similarity ratings than rhythms at different tempos, and we also predicted that edit-dis-
tance would reliably account for similarity ratings regardless of  differences in tempo.

Methods

Participants

Nineteen participants (10 females; range = 18–27 years, M = 21.7 years; SD = 2.5 years) were 
recruited from The Ohio State University community. All participants gave written, informed 
consent approved by The Ohio State University Institutional Review Board. Data from one 
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Figure 3. The stimuli used in the present experiment. The rhythm phrases (R1 through R8) were 
constructed at two tempos—90 and 150 BPM.
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participant (1 female) were discarded due to an error in the experiment code, leaving a total of  
18 intact participants’ data. Before the experiment, participants filled out a survey about their 
demographic and musical background. Each participant’s musical experience was quantified 
as the sum of  the total number of  years of  formal experience including private lessons and class 
instruction. If  participants played multiple instruments and/or had overlap in years of  experi-
ence, then the overlapping years were counted only once. Overall, our participants had moder-
ate musical experience (M = 5.7 years; SD = 5.6 years), but most were not currently engaged in 
any type of  musical activities. Each participant received either monetary compensation or 
extra credit in a course for their participation.

Stimuli and materials

Rhythm stimuli were created in MuseScore (version 2.1.0) as .wav files with a sampling rate of  
44.1 kHz. All stimuli were created using the wood block instrument without any added reverb. 
Figure 3 shows eight rhythm phrases used in this experiment (referred to as R1 through R8), 
whose pairwise edit-distance was systematically varied from 1 to 4 solely through substitutions 
(Table 1). As an example, to derive R2 from R1 one would substitute the first quarter note of  R1 
with two eighth notes. Since one substitution was required, this demonstrates that R1 and R2 
had a pairwise edit-distance of  1. Each of  the 8 rhythm phrases was generated at two different 
tempos, once at quarter note = 90 BPM (beat period = 667 ms) and again at 150 BPM (beat 
period = 400 ms), yielding a total of  16 rhythm stimuli.

Task and procedure

The experiment was administered using MATLAB (version R2017a, MathWorks) and 
Psychtoolbox-3 (version 3.0.14, Kleiner et al., 2007) in a sound-proof  audio booth. Participants 
first read the experiment’s instructions on the computer at their own pace, which read that 
they would be listening to pairs of  “sound bites” and rating their similarity. Immediately follow-
ing instructions, five practice trials were presented prior to the experimental trials to acclimate 
the participant to the task. These practice trials were excluded from analysis. Each trial started 
with the participant listening to a pair of  rhythms, with a 2,500 ms period of  silence between 
the stimuli. Then, participants rated the rhythms’ similarity on a Likert-type scale from “1” 
(most different) to “4” (most similar) using a keyboard. Although this range coincided with the 
edit-distance manipulation, this was not intended to reflect one-to-one correspondence between 

Table 1. Theoretical edit-distance between each rhythm phrase (R1–R8).

Pairwise edit-distance

 R1 R2 R3 R4 R5 R6 R7 R8

R1 0  
R2 1 0  
R3 1 2 0  
R4 2 1 3 0  
R5 2 3 1 4 0  
R6 2 3 3 2 2 0  
R7 3 2 2 1 3 3 0  
R8 3 2 4 1 3 1 2 0
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the two scales. For every trial, participants were instructed to respond as quickly as possible 
within 5 s after the second rhythm ended. There was a burst of  white noise immediately after 
each response, which served to indicate the end of  the current trial; the white noise was also 
intended to discourage carry-over memory of  the previous rhythm phrases. No training or 
feedback was provided on how to judge and rate similarity, and there were no hints about the 
edit-distance and tempo manipulations before the experiment.

Each of  the 16 stimuli was presented in all possible pairs within (e.g., 90 vs 90 BPM or 150 
vs 150 BPM) and between tempos (e.g., 90 vs 150 BPM), including all 16 pairs of  identical 
stimuli, resulting in a total of  136 trials, calculated as n(n + 1)/2, where n is the total number 
of  stimuli. These were randomly presented across 4 blocks of  34 trials each. A self-paced recess 
occurred halfway into each block, and 2 min of  mandatory recess occurred at the end of  each 
block. In total, the task took approximately 25–30 min to complete.

Analysis

Inter-participant reliability. We first assessed how consistent similarity ratings among rhythm 
pairs were between participants. For each participant, similarity ratings of rhythm pairs were 
arranged into a distance (i.e., similarity) matrix. A test of congruence among distance matri-
ces (CADM; Legendre & Lapointe, 2004) was used to evaluate the inter-participant agreement 
of similarity matrices. The CADM method tests the significance of Kendall’s coefficient of con-
cordance (Kendall’s W) between multiple distance matrices. Kendall’s W is a metric used to 
evaluate the rating agreement between participants, ranging from 0 (no agreement) to 1 
(unanimous). This analysis creates a null distribution by repeatedly permuting the rows and 
the corresponding columns of each distance matrix and calculating Kendall’s W from the per-
muted matrices. The significance of the observed coefficient is evaluated against the null dis-
tribution generated by permutation (n = 10,000). A strength of the CADM test is it allows for 
post hoc tests of whether and to what extent each participant’s distance matrix is congruent 
with the others. Thus, the group-level CADM analysis was followed by a posteriori tests to fur-
ther identify participants with deviating ratings. Analyses were implemented using the CADM 
package (Campbell, Legendre, & Lapointe, 2011) in R software (version 3.4.2).

Non-metric multidimensional scaling. We employed non-metric multidimensional scaling (nMDS) 
to visualize participants’ internal representation of  the rhythm stimuli. Furthermore, the 
resulting dimensions of  nMDS will be used in subsequent Mantel tests to scrutinize the edit-
distance effect. Previously, metric MDS has been used to spatially map the perceptual similarity 
between musical stimuli based on categories, including genre, tempo, and emotional valence 
(Bigand, Vieillard, Madurell, Marozeau, & Dacquet, 2005; Georges & Nguyen, 2019; Novello, 
McKinney, & Kohlrausch, 2006). One important advantage of  nMDS over MDS in measuring 
perceptual similarity data is that it yields more consistent similarity distances among the items 
using the ordinal rank obtained from each participant whose extent of  rating may considerably 
vary (Agarwal et al., 2007). Individual similarity matrices were averaged into a group similar-
ity matrix due to high concordance across participants (see the “Results” section). The average 
similarity matrix was used as input for nMDS in R software (version 3.4.2) using RStudio (ver-
sion 1.1.383). Furthermore, the goodness of  fit of  the nMDS model is depicted by a quantity 
called “stress” with 0 being most optimal (Kruskal, 1964). As such, we performed nMDS itera-
tively until the stress value fell below the acceptable limit (stress < .1) for optimal model fit (Nov-
ello et al., 2006).
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Evaluation of edit-distance. To evaluate the edit-distance model, we separately created two simi-
larity matrices containing mean ratings for within- and between-tempo conditions for each 
participant (two per participant, 36 matrices total). Then, these individual similarity matrices 
were averaged to form a group-level similarity matrix per each condition. Finally, the two 
group-level matrices (Tables 2 and 3) were compared against the theoretical edit-distance 
matrix (Table 1) using the Mantel test, a non-parametric test of  correlation between distance 
matrices. This analysis creates a sampling distribution by repeatedly permuting the rows and 
the corresponding columns of  one matrix and calculating Spearman’s correlation coefficients 
(Legendre, 2000; Mantel, 1967). The p-value is computed by comparing the data against a null 
distribution generated by permutation (n = 10,000). Each step of  the Mantel tests was imple-
mented using the ncf package in R software (version 3.4.2).

Results

Inter-participant reliability

The CADM test revealed a significant agreement of  similarity ratings between participants, 
W = .333, p < .0001. A subsequent post hoc congruence test further confirmed that every 

Table 2. Group-averaged ratings of similarity for each pair of rhythms in the within-tempo condition. 
Scores closer to 4 indicated “most similar” while closer to 1 indicated “most different.”

Mean ratings of similarity (within-tempo)

 R1 R2 R3 R4 R5 R6 R7 R8

R1 3.8  
R2 2.5 3.9  
R3 3.3 2.3 3.9  
R4 2.5 3.0 2.1 3.9  
R5 2.7 2.4 2.8 2.1 3.9  
R6 2.5 2.1 2.4 2.1 2.0 3.9  
R7 2.4 2.8 3.0 3.2 2.2 1.8 4.0  
R8 1.8 2.6 2.2 2.9 1.9 2.0 2.8 4.0

Table 3. Group-averaged ratings of similarity for each pair of rhythms in the between-tempo condition. 
Scores closer to 4 indicated “most similar” while closer to 1 indicated “most different.”

Mean ratings of similarity (between-tempo)

 R1 R2 R3 R4 R5 R6 R7 R8

R1 2.4  
R2 1.9 2.4  
R3 2.1 1.8 2.3  
R4 1.8 2.1 1.8 2.7  
R5 1.7 1.6 2.1 1.5 2.6  
R6 1.8 1.6 1.6 1.7 1.8 2.8  
R7 1.8 1.9 1.9 2.1 1.8 1.7 2.4  
R8 1.4 1.5 1.6 2.0 1.4 1.7 2.0 2.8
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participant’s ratings was consistent with the others, all ps < .001. Although not every identical 
rhythm pair (e.g., the diagonal elements of  Table 2) was rated as most similar with a “4.0” rating 
despite their exact same rhythmic content and tempo, the high concordance of  ratings across 
participants and large majority of  identical rhythms rated with the highest similarity rating (266 
out of  288 trials) indicated that only a few participants experienced momentary and occasional 
lapses of  attention during the experiment. Overall, these results assured reliable responses across 
all listeners, which were subsequently used in the nMDS and Mantel test analyses.

Non-metric multidimensional scaling

Optimal nMDS generated a total of  seven-dimensional space (stress = .00613) when the stress 
value fell below the acceptable threshold (stress < .1). Among the seven dimensions, only the 
first two dimensions were interpretable and no logical labels could be assigned to the rest 
(potential candidates for dimension labels included number and location of  quarter and eighth 
notes). As shown in Figure 4, the first dimension (horizontal) clearly corresponded to the tempo 
of  stimuli; rhythms at 90 BPM were clustered on the left side and rhythms at 150 BPM were 
clustered on the right side. The second dimension (vertical) of  the nMDS map appeared to cor-
respond to rhythm primacy—whether rhythm phrases began with a quarter note (the top half) 
or an eighth note pair (the bottom half). Note that rhythm primacy is not independent from 
edit-distance; shared primacy between two rhythms means that the maximum edit-distance 
between the rhythms is reduced by one. As such, the potential confounding effect of  rhythm 
primacy on edit-distance will be considered in the following analysis of  edit-distance. Together, 
nMDS analysis confirmed that the manipulation of  tempo was successful, and it also newly 
yielded primacy as another important factor for rhythm similarity.
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Figure 4. nMDS map visualizing the two distinct patterns of rhythm clusters. The horizontal dimension 
represents tempo, since rhythms clustered on the left side have a slower tempo of 90 BPM, while rhythms 
on the right side have a faster tempo of 150 BPM. The vertical dimension represents rhythm primacy, with 
rhythms on the top half beginning with a quarter note and rhythms on the bottom half beginning with a 
pair of eighth notes.
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Evaluation of edit-distance

The group-averaged similarity rating matrices for the within- and between-tempo conditions 
are shown in Tables 2 and 3, respectively. In line with the nMDS results, similarity ratings for 
the within-tempo rhythm pairs were overall higher than those in the between-tempo 
condition.

The effect of  edit-distance on rhythm similarity was examined using Mantel tests on both 
within-tempo (Table 2) and between-tempo (Table 3) conditions by comparing the observed 
similarity matrices with the theoretical edit-distance matrix (Table 1). The tests revealed that 
the similarity ratings during the within-tempo condition were significantly correlated with 
edit-distance, r = –.648, p < .001, replicating previous findings (Toussaint et  al., 2012; 
Toussaint & Oh, 2016). Moreover, edit-distance had a significant correlation with similarity 
ratings during the between-tempo condition, r = –.760, p < .001, indicating that edit-distance 
impacted rhythm similarity judgments even when the two rhythm phrases differed considera-
bly in tempo. Figure 5 illustrates the correlations between the off-diagonal elements of  the edit-
distance matrix and the two similarity matrices.

Given that rhythm similarity was also influenced by primacy in the nMDS, we created a pri-
macy distance matrix for use with the Mantel test to examine whether the effect of  primacy was 
significant on similarity data. This primacy distance matrix had binary coding (1 or 0) differen-
tiating whether rhythms had same or different beginning patterns. The Mantel test showed that 
the primacy matrix was significantly correlated with both similarity matrices for the within-
tempo, r = –.645, p < .05, and the between-tempo, r = –.534, p < .05, conditions, which 
prompted us to examine whether the effect of  edit-distance would be moderated by rhythm 
primacy for both within- and between-tempo conditions (Smouse, Long, & Sokal, 1986). We 
performed the Mantel tests again with rhythm primacy being controlled, which revealed that 
the correlation between edit-distance and rhythm similarity ratings remained significant for 
both within-tempo, r = –.475, p < .01, and between-tempo, r = –.666, p < .001, conditions.

Discussion

In the present study, we investigated rhythm similarity using the edit-distance model (Post & 
Toussaint, 2011; Toussaint et al., 2012; Toussaint & Oh, 2016). In particular, we were inter-
ested in whether or not edit-distance could account for the degree of  perceptual similarity 
between unique rhythm phrases that also differed in tempo—a question hitherto unexplored 
despite its ecological importance. As expected, the nMDS visualized a robust clustering of  
rhythms on the basis of  tempo, but the data-driven approach newly found that rhythms were 
also clustered on the basis of  the onset pattern, a phenomenon we termed rhythm primacy. 
Mantel tests revealed that substitution-based edit-distance reliably accounted for perceptual 
similarity of  rhythms irrespective of  tempo. Finally, a partial Mantel test further confirmed the 
edit-distance effect while controlling for the effect of  primacy.

Together, our findings lend further support to the edit-distance model (Toussaint et  al., 
2012; Toussaint & Oh, 2016). More importantly, we demonstrate for the first time that the edit-
distance model can explain perceptual similarity across rhythmic phrases with different tem-
pos. This is a crucial extension of  previous literature, which only utilized rhythm phrases at the 
same tempo, raising a question of  its ecological validity (Post & Toussaint, 2011; Toussaint 
et al., 2012; Toussaint & Oh, 2016). Natural music is multifaceted and contains wide variations 
in tempo, even within the same song, thus, it can be challenging to develop algorithms that can 
accurately sort music that renders similar percepts. As such, our finding of  tempo-invariant 
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edit-distance offers further validation that edit-distance can also be an effective tool to help 
develop music classification algorithms (Esparza, Bello, & Humphrey, 2015; Lidy & Rauber, 
2005; Meng, Ahrendt, Larsen, & Hansen, 2007).

A fundamental question would be whether or not edit-distance is adopted as a plausible bio-
logical algorithm for rhythm analysis in music. None of  the participants were able to consciously 
count the number of  edits to transform one rhythm into another during the instantaneous 
response period after each trial. Nevertheless, participants’ similarity ratings were remarkably in 
line with the theoretical edit-distance, and there was a robust consistency across participants’ 
judgments. This suggests that analysis of  edit-distance may be hard-wired in the human auditory 
system, which can immediately render perceptual gestalt of  rhythmic patterns in music. Indeed, 
a recent functional magnetic resonance imaging (fMRI) study demonstrated that rhythmic gestalt 
was represented in the bilateral temporoparietal junction and right inferior frontal gyrus (Notter, 
Hanke, Murray, & Geiser, 2019). In this study, a linear classification algorithm was used to probe 
every location of  the brain that generated a spatially distributed pattern of  neural activity across 
three short rhythm phrases collapsed across different tempos. However, it remains to be deter-
mined whether or not rhythms across different tempos elicit similar neural representations in 
these regions if  their edit-distance is kept small.

When it comes to the perceptual gestalt of  rhythms, tempo may provide the primary cue to 
discern the qualitative differences between rhythms. In the present experiment, listeners, with 
no hints, had to judge perceptual similarity of  rhythmic pairs that spanned only one measure 
and were matched in other important musical characteristics, such as timbre, pitch, and meter. 
Under such constraints, tempo provided listeners with an obvious criterion when discerning 
rhythm similarity, which was clearly visualized by the nMDS analysis. This is consistent with 
previous literature demonstrating that tempo differences influenced similarity ratings of  exist-
ing music pieces (Cupchik et al., 1982; Honingh et al., 2015 but see also Novello et al., 2006). 
In other words, different songs with similar tempos were rated as more similar than different 
songs with markedly different tempos. In essence, tempo is intrinsic to rhythm similarity and is 
a dominant factor when judging perceptual similarity across different rhythmic patterns.

Furthermore, in the present study, we opted to employ substantially different tempos (90 vs 
150 BPM) for the rhythm stimuli for the purpose of  ensuring that listeners were readily able to 
perceive the difference in tempo. However, this may have created unexpected interactions 
between the onset pattern (eighth vs quarter note) and tempo. For example, a particular rhythm 
beginning with two quarter notes at 150 BPM can be perceptually equivalent to another 
rhythm beginning with two eighth notes at 75 BPM. This was indeed the case, wherein one of  
the 150 BPM rhythms that began with two quarter notes (R6) was clustered closer with the 
90 BPM rhythms in the nMDS.

Another unexpected finding from the nMDS analysis was a primacy effect in the absence of  a 
recency effect. Typically, both primacy and recency effects are found in serial recall tasks (Greene 
& Samuel, 1986; Murdock, 1962; Roberts, 1986; Tzeng, 1973), but primacy effects are also often 
found in recognition tasks that are akin to the similarity judgment task employed in the current 
study (Digirolamo & Hintzman, 1997). Our finding of  an isolated primacy effect may also be 
explained by the metrical organization of  the rhythm stimuli. For example, Beats 1 and 3 are 
strong in musical rhythms, while Beats 2 and 4 are weak in 4/4 meter (Lerdahl & Jackendoff, 
1983; Phillips-Silver & Trainor, 2005). This metrical interaction could explain why the first beat 
(i.e., primacy) is more salient to listeners than the fourth beat (i.e., recency; Jones, 2004).

Arguably, participants may have perceived some rhythm phrases as starting with an upbeat 
(i.e., anacrusis) instead of  a downbeat, further impacting the primacy effect and rhythm simi-
larity judgments. For example, rhythms beginning with two eighth notes (e.g., R4) could be 



12 Psychology of Music 00(0)

interpreted as starting on an upbeat with a perceived (but not presented) stress on Beat 2. 
Conversely, rhythms beginning with a quarter note (e.g., R1) could be perceived as starting on 
the downbeat. However, both meter and the number of  beats were controlled to maintain a 
uniform structure for the rhythm phrases, and equal stress was placed on each of  the four 
beats. Thus, the beat and meter were presented consistently across all subjects. Since the first 
onset of  a rhythm phrase generally has the highest perceptual salience (Ladinig, Honing, 
Hááden, & Winkler, 2009; Toussaint et al., 2012), it is unlikely that participants perceived our 
rhythm phrases as beginning with an anacrusis especially given the equal stress placed on 
each beat. Although melodies using short–short–long (SSL) rhythms could be perceived as 
starting on an upbeat compared with long–short–short (LSS) rhythms (London, Cross, & 
Himberg, 2006), this effect is not always consistent across individuals and different rhythmic 
structures (Stobart & Cross, 2000; Vos, van Dijk, & Schomaker, 1994). As such, we believe 
that the perception of  anacruses, if  present, is rather unpredictable and would not greatly 
impact our results.

The dominant influence of  both primacy and tempo on the nMDS map raises the question of  
which factor could take priority when judging rhythm similarity. In real music, various genres 
of  ballroom dances and EDM are defined by their restrictive tempo ranges (Dixon, Gouyon, & 
Widmer, 2004; Panteli et al., 2014). Since tempos are very similar between songs in these gen-
res, judging rhythm similarity may rely on alternative factors than tempo to help compare the 
phrases, such as primacy in successive motifs. Furthermore, previous work has shown that 
ratings of  rhythm similarity also appear to be influenced by the swing and metrical “feel” of  a 
piece, a participant’s musical experience, and the presence of  musical context; rhythms heard 
as isolated phrases tend to be rated as more similar than when they are presented within the 
original piece of  music (Bruford, Barthet, McDonald, & Sandler, 2019; Cameron, Potter, 
Wiggins, & Pearce, 2017). As such, the interactions between primacy and other external fac-
tors, such as musical experience and context, should be further surveyed.

Despite the presence of  tempo and primacy which increases the ecological validity when 
evaluating the edit-distance effect, we note that our conclusions drew from a rather constrained 
set of  rhythmic structures. For instance, we only opted to choose substitutions as a way of  vary-
ing the edit-distance among rhythms although previous studies also included insertions and 
deletions (Toussaint et al., 2012; Toussaint & Oh, 2016). It is important to point out that we 
intended to keep the meter unchanged (Cao et al., 2014; Prince, 2014) while systematically 
varying the edit-distance, for which insertions and deletions were not viable options.

The present study also used limited stratifications of  tempo and edit-distance. In our 
rhythm phrases, we set the maximum edit-distance at 4 (Figure 3) which is identical to the 
manipulation used in previous literature (Toussaint et al., 2012). However, trends in rhythm 
similarity ratings may be affected by a larger edit-distance range (e.g., edit-distance = 0–8), a 
larger range of  tempos (e.g., 60, 120, and 180 BPM), or a smaller increment between tempos 
(e.g., 100, 120, 140 BPM). Rhythm phrases with a longer duration (i.e., two-measure 
phrases) allow for rhythms with a higher number of  edits, allowing for more complex changes 
between rhythms. Furthermore, substitutions can also be more complex than were explored 
in the present experiment. For example, by changing a set of  eighth notes to a set of  triplets 
the primary unit of  subdivision is changed which may alter judgments of  rhythm similarity. 
Moreover, the strength of  primacy in the presence of  other salient rhythmic features, such as 
accents, syncopations, and rests, is unknown and should be further investigated. Overall, 
combining these complex rhythms with insertions and deletions will help to determine the 
robustness of  edit-distance, primacy, and tempo in contexts that more accurately reflect eve-
ryday music listening.
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Conclusion

Using rhythm stimuli that differed in their tempo and content, our data corroborated the robust 
nature of  edit-distance, indicating its significant influence on rhythm similarity ratings regard-
less of  differences in tempo or rhythm primacy. While our evaluation offers a glimpse into 
rhythm similarity and perception, future study is warranted to generalize the present findings 
to more complex rhythms, additional tempos, and longer pieces of  music.
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